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Introduction
For this project, I have chosen to examine the 

performance of various benchmarks on the 
Beaglebone Black platform running Ubuntu 14.04 
(kernel version 3.8.13-bone47). Specifically, I am 
looking at optimization methods for several 
benchmarks in the Phoronix1 and MiBench2 test suites
which focus on CPU utilization, memory access, and 
network throughput.

Background and Related Work
I chose this project because I want to 

demonstrate the capabilities of the Beaglebone Black 
(hereafter referred to as the Beaglebone) and its 
suitability to handle multiple CPU- and 
memory-intensive operations. This development 
board will be used on board the ANDESITE student 
satellite project being designed and built here at 
Boston University, and our team needs to have a clear
understanding of the capabilities of what will become
the central computer of the satellite system, what 
software and hardware bottlenecks exist, and how to 
alleviate those bottlenecks to ensure solid 
performance in a variety of demanding situations. 

During flight, the satellite will have to balance
the operation of several payloads and a number of 
important tasks (such as downlinking data to the 
Earth) in a way which is quite similar to a data 
center’s efforts to load-balance the work across many 
servers while meeting client’s quality of service 
agreements.3  Rather than load balancing virtual 
machines between identical servers,the ANDESITE 
system will have to duty cycle the payloads on and 
off in accordance with scientific requirements (for 
example, some payloads only need to be active while 
the spacecraft is at certain latitudes) as well as the 
hard requirements of available power4 and heat 
dissipation. And while a datacenter can place multiple

virtual machines from different clients on  the same 
or different hardware as needed, the systems on board
a satellite will all be running on unique, purpose-built
hardware. These processes can therefore benefit from 
hardware acceleration but there are no opportunities 
to perform software load balancing among different 
subsystems.

Another important limitation is that unlike a 
client's VM in a datacenter or a high performance 
computing experiment, we cannot do any form of 
checkpointing5 because a scientific instrument may 
have only a few minutes to gather the necessary data 
at a point in orbit, and if there is a failure or 
bottleneck then we cannot simply roll back to the 
previous checkpoint. The data flow must be 
continuous, although small amounts of buffering (on 
the order of kilobytes) are necessary.

The ANDESITE satellite will need to receive, 
analyze/sort, compress, encrypt, and transmit a large 
amount of data continuously down to Earth, as well 
as receiving data from us and decrypting it. The 
mission requirements call for gathering gigabits of 
data on every orbit and the transmission window will 
be sparse as the ANDESITE spacecraft passes over 
friendly GENSO stations6 (the volunteer-run stations 
used for communicating with some educational and 
low-budget satellites), potentially having as little as 
several hours each day to transmit the data. The 
downlink will be further throttled by the low rate of 
transmission in the chosen frequency. Thus, it is 
necessary to optimize every step of this process as 
much as possible. And while it may be tempting to 
dismiss the encryption step as unnecessary for the 
science goals, there have been many attempts in the 
past to hack satellite command-and-control protocols 
with surprising successes7,8,9,10 so the encryption must 
be world-class and performed on every piece of data 
transmitted.

The Beaglebone Black's processor is an 
AM335x ARM Cortex A8 chip with a single core that
can operate at frequencies up to 1GHz. The main disk
takes the form of 2GB of flash memory, and there are 
512MB of DDR memory (490MB available on the 
system used for this paper). Interestingly the AM335x
CPU has two smaller 32-bit RISC cores called the 
Programmable Realtime Units or PRUs. These two 
cores operate at 200MHz and must be programmed in
an assembly language that is limited to programs of 
two thousand instructions per core or fewer, due to 



the 8KB of instruction RAM available.11, 12,13 
These extra cores offer exciting capabilities 

for accelerating the performance of the Beaglebone 
system by offloading certain operations, such as 
UART access to peripherals through the GPIO pins 
which they have access to (the PRUs can access 18 of
the 66 GPIOs). Furthermore the usage of “lesser” 
cores in a CPU has been researched extensively as a 
way to accelerate mature computations14 or provide a 
low-power alternative to the main CPU.15,16

Project setup and methodology
From these tight requirements, and going off 

work performed by Joshua Datko17 and others, I 
decided to look at optimizing CPU energy-delay 
product using dynamic voltage and frequency scaling 
(DVFS) through the “governors” included in the 
cpufreq program,18 optimizing memory access speeds,
and enabling available hardware acceleration for 
cryptographic functions including AES, SHA, MD5, 
and an on-chip RNG.11 Thus the project is a look at 
how much hardware acceleration and DVFS can help 
(or not) for the security, network and 
telecommunications themed benchmarks in MiBench 
and the scientific and compression benchmarks in the 
Phoronix suites. These specific benchmarks were 
chosen for their relevance to ANDESITE's scientific 
mission and engineering requirements. The 
benchmarking suite MEVBench was considered but 
ultimately deemed inappropriate, due to its focus on 
computer vision and multithreading,19 and 
unnecessary since Phoronix and MiBench offer 
comprehensive test suites to cover a wide variety of 
application areas that are more relevant to 
ANDESITE's mission requirements.

I also used the Tor internet anonymizing 
utility20 to provide some unpredictable network 
activity in the background. The Tor daemon uses 
about 17MB of memory on the Beaglebone and a 
small (<1%) amount of CPU resources continuously. 
This is subject to unpredictable spikes every few 
seconds (up to about 20% CPU usage and about 
35MB of memory) and so it does a good job of 
simulating unpredictable low-level background 
activity. Aside from Tor, I wrote a script which 
repeatedly uses dd and gzip to create, compress, and 
delete a large file over and over to put stress on both 
memory access (via dd) and CPU usage (via gzip). 

Ubuntu and many other versions of linux 
support DVFS “governors” which are programs that 
control CPU frequency scaling. On the Beaglebone 
black there are four frequencies which can be chosen,
300MHz, 600MHz, 800MHz, and 1GHz. The 
benchmarks were run first with the DVFS governor 
set to “ondemand”, which tries to keep the CPU 
frequency as low as possible and only makes short 
exceptions to raise the frequency above 300MHz. 
When ondemand raises the frequency it sends it 
straight up to maximum, so the CPU only throttles 
between min and max. Then the benchmarks were 
performed with the “performance” governor which 
keeps the frequency at maximum (1GHz) even when 
idle. Thus we expect to see better performance due to 
a lack of switching costs from going between 
300MHz and 1GHz. A more realistic governor for 
usage on board ANDESITE would be the 
“conservative” governor, which is similar to 
ondemand (preferring 300MHz unless CPU usage 
goes above 95%) but unlike ondemand, when it 
scales up the DVFS it goes step by step, first going to
600MHz, and then if CPU usage is again above 95%, 
moving to 800MHz and so on up to maximum. 

Benchmarks Used
The first benchmark I used was SciMark 2.0, 

a benchmark suite produced by the National Institute 
of Standards and Technology, which was chosen to 
present a variety of scientific tasks that the 
ANDESITE computer will most likely have to 
perform. These include fast Fourier transforms, 
Monte Carlo integration, and three different types of 
matrix math: LU factorization, sparse matrix 
multiplication, and Jacobi “successive 
over-relaxation” which is a method of solving linear 
equations.21 These tests were performed first with and
without Tor running in the background, then with 
both Tor and the script I created in the background, 
and finally with different levels of DVFS and 
cryptographic hardware acceleration enabled. 

The second benchmarking suite is another 
Phoronix test suite which uses different types of 
compression algorithms to analyze the processor's 
performance. ANDESITE will be doing a very large 
amount of complicated data compression to try and 
rectify the difference between the gigabits of data it 
receives from its flock of sensors, and the kilobits of 
bandwidth that it has available to downlink that 



data.22 Some of this compression will be done with 
unique, purpose-built algorithms that are specific to 
the types of data we anticipate acquiring and the 
specific parts of that data we are interested in. Much 
of this depends on the finalized design and 
performance of the sensor systems. However, widely 
available open-source algorithms can approximate 
these uses quite closely. The Phoronix suite uses 
7zip,23 Parallel BZIP2 (pbzip2),24 and LZMA25 
algorithms. 

The MiBench embedded benchmark suite 
offers a wide range of commercially representative 
algorithms for different areas of use. I have selected 
networking, security, and telecommunications. The 
networking benchmarks are a matrix computation 
based algorithm known as Dijkstra which simulates 
computing a shortest path between nodes in a 
network, and  the traversal of a Patricia Tree which 
simulates altering routing tables dynamically. In the 
cryptographic suite I have chosen SHA encryption 
and the Blowfish cipher because variants of SHA can 
be used to encrypt data or  compute hashes, and 
Blowfish or algorithms similar to it will be used for 
secure communication of data and commands. Thus 
these two benchmarks cover everything from error 
checking (SHA is used for calculating MD5 hashes) 
to securing a  communication stream. Finally in the 
telecommunications suite there is another version of 
the fast Fourier transform, a GSM (Global Standard 
for Mobile) communications encoder/decoder 
operating on a large sample of voice data, an 
Adaptive Differential Pulse Code Modulation 
(ADPCM) algorithm also operating on speech 
samples while performing 4:1 compression, and a 
32-bit error checking algorithm called Cyclic 
Redundancy Check (CRC) using the same data set as 
the ADPCM benchmark. The ADPCM benchmark 
performance was highly variable, far more so than the
others in MiBench, so I ran it ten times and averaged.
The MiBench tests were not run with Tor, dd, or gzip 
in the background.

Finally, all of these benchmarks were run 
again after implementing the steps outlined by Joshua
Datko to enable hardware crypto acceleration, and 
using the “performance” governor to create a 
best-case scenario for comparison.

Experimental results

As mentioned above, these tests were run first 
with a “fresh install” system using the defaults for 
Ubuntu 14.04 and the kernel image 3.8.13-bone47. 
Then a second run was performed for calibration, a 
run with Tor active in the background, a run with dd, 
gzip and Tor all active, and then with none of those 
programs active while I performed DVFS scaling 
using the performance and conservative CPU 
frequency governors. The ondemand governor is the 
default and so that was being used during all the other
runs.

SciMark 2.0 Results

From the results shown in Figure 1, the Monte
Carlo estimation was nearly unaffected by any 
alterations to CPU frequency or background activity. 
This is more surprising given that this benchmark is 

Figure 1: SciMark 2.0 - Monte Carlo estimation
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Figure 2: SciMark 2.0's version of FFT
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supposed to exercise the random number generator, 
the hardware for which is enhanced by the addition of
the cryptographic hardware acceleration kernel 
module. It appears that the calculation is simple 
enough for the processor to handle without trouble, 
even under heavy loads.

Figures 2, 3, 4, and 5 show the impact of these
environmental changes on the other algorithms in the 
SciMark 2.0 suite. The fast Fourier transform showed
erratic results and high variability. The three linear 
math applications showed reduced performance when
dd and gzip were running in the background, but 
were otherwise agnostic to environmental changes. 

It appears that the AM335x CPU is well 
optimized for these calculations and is robust against 
heavy workloads causing performance degradation 
for linear calculations.

Compression Suite Results

Figure 4: SciMark 2.0 - LU matrix factorization
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Figure 5:  SciMark 2.0 - Jacobi SOR matrix math
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SciMark v2.0
Computational Test: Jacobi Successive Over-Relaxation
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Figure 6: 7zip compression. More is better.
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1. (CXX) g++ options: -pipe -lpthread

Figure 3: SciMark 2.0 - Sparse Matrix 
Multiplication
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The compression suite of benchmarks showed
much more variability and dependency on the 
environment, specifically on the CPU load. LZMA is 
used as part of 7zip, so one would expect similar 
results between those two benchmarks. The graphs 
here show MIPS for 7zip and seconds-to-completion 
for LZMA, so although the graphs are inverses of 
each other they do show a strong connection since 
both suffer dramatically from having dd and gzip run 
in the background while being agnostic to other 
environmental variables. They even perform equally 
well despite the frequency switching costs of the 
ondemand and conservative governors, compared 
with the performance governor. 

The Beaglebone has only a single core 
processor, so one would expect no benefit from the 

multithreaded nature of pbzip2. However, upon 
running the pbzip2 benchmark with the Tor program 
active in the background, there was considerable 
slowdown as demonstrated in Figure 7. The excellent 
performance during the first run on a clean install 
indicates that in the course of setting up the tests and 
using the Beaglebone, I may have introduced a 
number of active threads into the environment despite
my efforts to eliminate unnecessary activity in the 
background. It's possible that the Tor daemon has to 
check frequently for activity and may cause frequent 
short interruptions to thread scheduling on the 
processor, disrupting a very thread-dependent 
program like pbzip2.

MiBench Results

The MiBench suite contained programs which
ran extremely quickly, on the order of 1-8 seconds 
rather than 1-4 hours like the Phoronix testbed. As a 
result, I deemed it impractical to do comparisons with
dd, gzip, and Tor running in the background and 
instead focused on the effects of dynamic frequency 
scaling and hardware acceleration. These graphs 
show the amount of time the process spent in the 
kernel (shown in orange as “sys”), outside the kernel 
(in red, as “user”), and overall real-world time shown 
in blue. The user and sys time are only for time spent 
on this exact process, while real-world time takes in 
to account all delays that a user of the system 
experiences in waiting for the process to be 
completed. Thus frequent interruptions from other 
threads or delays in accessing main memory would 
show up in the “real” time segment of each graph.

Figure 7: Parallel BZIP2 compression duration in
seconds. Less is better.
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1. (CXX) g++ options: -O2 -pthread -lbz2 -lpthread

Figure 8: LZMA compression in seconds. Less is 
better.
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Figure 9: The Dijkstra algorithm



For all of these benchmarks except ADPCM, 
the real time spent in the process is almost entirely a 
sum of the time spent in user-space and kernel-space 
working on that process. However, for ADPCM there 
are large delays from other processes which affect the
time to completion. The implementation of ADPCM 
here may be heavily reliant on memory access, 
possibly during the compression phase, and thus 
suffers more from short interruptions from other 
activity using the bus. As mentioned previously the 
ADPCM benchmark was highly variable, an 
indication of susceptibility to the CPU and memory 
environment. It was also the only algorithm which 
appeared to benefit from use of the cryptographic 
hardware acceleration.

Figure 10: The Patricia Tree data structure

Figure 11: Blowfish encryption

Figure 12: SHA-1

Figure 13: Adaptive Differential Pulse Code 
Modulation

Figure 14: 32-bit Cyclic Redundancy Check



The version of the fast Fourier transform used 
in the MiBench suite differs from the version used in 
Phoronix by being two-dimensional rather than 
one-dimensional, and using pseudo-random complex 
data. The Phoronix version also performs the 
benchmark in two discrete steps rather than one.

Conclusions

From Figures 1-5 it appears that the 
Beaglebone's CPU is quite optimized for matrix 
math, showing nearly the same time of computation 
at 300MHz as it does at 1GHz. 

Figures 6-8 demonstrate that compression is 
quite a different matter, being reliant on CPU 
frequency as well as memory access times, and not 
robust against sharing the CPU and memory bus with 
other processes. The need to access memory to 

process files which are hundreds of megabytes in size
means that the 64KB L1 cache and 256KB L2 cache 
are not nearly enough and calls to main memory are a
major factor in performance. This is not something 
which could be optimized and is a likely bottleneck 
for ANDESITE's main computer.

The MiBench suite provides an interesting 
look at the switching costs inherent in using any of 
the dynamic governors for DVFS, seen in Figures 
9-16. Specifically the conservative governor, which 
does the most frequency scaling (with resolution on a 
10ms time scale, meaning the frequency may be 
readjusted every 10ms) created the most delays in 
performance which is unfortunate since it is also the 
governor most optimized for battery-dependent 
systems such as phones, laptops and satellites. 
Cryptographic hardware acceleration did not play 
much of a role, even for SHA-1 computations, which 
is surprising but these algorithms are also between 
15-20 years old and so the AM335x CPU may 
already be highly optimized for them. It is 
unfortunate the MiBench suite does not include more 
recent algorithms.

The time saved by using the static 
“performance” governor, which locks the CPU 
frequency at 1GHz, is a major contributor to shorter 
algorithms like Dijkstra and SHA-1 (Figures 9 and 12
respectively) where the switching cost from 
ondemand's transition from 300MHz to 1GHz leads 
to more than triple the time spent in computation. 
This effect is less noticeable in direct proportion to 
time spent in the process. This means that if 
ANDESITE's system designers intend to do heavy 
network activity or telecommunications during a 
certain time period, requiring many uses of hashing 
and encryption,26 they should manually set the DVFS 
governor to maximum frequency for the whole 
duration of that activity and only reduce it to a more 
power-conscious mode after the communications 
window has closed. The “userspace” governor  allows
users with appropriate permissions to manually set 
the frequency without going in to the kernel so this is 
my recommendation for detailed system-level 
optimization.

This project has shown that Linux running on 
the Beaglebone offers many opportunities to adjust 
the performance and energy-delay product for 
processes on the system, allowing room for 
optimization geared towards security, networking, 

Figure 15: Another version of the FFT

Figure 16: Global Standard for Mobile 
encode/decode using Time- and 
Frequency-Division Multiple Access encoding.



and telecommunications in a resource-constrained 
environment like space. With further work on 
utilizing the PRUs we expect to see tremendous 
efficiency gains for dynamic operation in the field.
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