
Erik Knechtel
Boston University College of Engineering
EC700 Final Project Report
7 May 2014

Benchmarking a Unique Heterogeneous
CPU System: The Beaglebone Black's

Applicability for Space Science

Introduction
For this project, I have chosen to examine the

performance of various benchmarks on the
Beaglebone Black platform running Ubuntu 14.04
(kernel version 3.8.13-bone47). Specifically, I am
looking at optimization methods for several
benchmarks in the Phoronix1 and MiBench2 test suites
which focus on CPU utilization, memory access, and
network throughput.

Background and Related Work
I chose this project because I want to

demonstrate the capabilities of the Beaglebone Black
(hereafter referred to as the Beaglebone) and its
suitability to handle multiple CPU- and
memory-intensive operations. This development
board will be used on board the ANDESITE student
satellite project being designed and built here at
Boston University, and our team needs to have a clear
understanding of the capabilities of what will become
the central computer of the satellite system, what
software and hardware bottlenecks exist, and how to
alleviate those bottlenecks to ensure solid
performance in a variety of demanding situations.

During flight, the satellite will have to balance
the operation of several payloads and a number of
important tasks (such as downlinking data to the
Earth) in a way which is quite similar to a data
center’s efforts to load-balance the work across many
servers while meeting client’s quality of service
agreements.3 Rather than load balancing virtual
machines between identical servers,the ANDESITE
system will have to duty cycle the payloads on and
off in accordance with scientific requirements (for
example, some payloads only need to be active while
the spacecraft is at certain latitudes) as well as the
hard requirements of available power4 and heat
dissipation. And while a datacenter can place multiple

virtual machines from different clients on the same
or different hardware as needed, the systems on board
a satellite will all be running on unique, purpose-built
hardware. These processes can therefore benefit from
hardware acceleration but there are no opportunities
to perform software load balancing among different
subsystems.

Another important limitation is that unlike a
client's VM in a datacenter or a high performance
computing experiment, we cannot do any form of
checkpointing5 because a scientific instrument may
have only a few minutes to gather the necessary data
at a point in orbit, and if there is a failure or
bottleneck then we cannot simply roll back to the
previous checkpoint. The data flow must be
continuous, although small amounts of buffering (on
the order of kilobytes) are necessary.

The ANDESITE satellite will need to receive,
analyze/sort, compress, encrypt, and transmit a large
amount of data continuously down to Earth, as well
as receiving data from us and decrypting it. The
mission requirements call for gathering gigabits of
data on every orbit and the transmission window will
be sparse as the ANDESITE spacecraft passes over
friendly GENSO stations6 (the volunteer-run stations
used for communicating with some educational and
low-budget satellites), potentially having as little as
several hours each day to transmit the data. The
downlink will be further throttled by the low rate of
transmission in the chosen frequency. Thus, it is
necessary to optimize every step of this process as
much as possible. And while it may be tempting to
dismiss the encryption step as unnecessary for the
science goals, there have been many attempts in the
past to hack satellite command-and-control protocols
with surprising successes7,8,9,10 so the encryption must
be world-class and performed on every piece of data
transmitted.

The Beaglebone Black's processor is an
AM335x ARM Cortex A8 chip with a single core that
can operate at frequencies up to 1GHz. The main disk
takes the form of 2GB of flash memory, and there are
512MB of DDR memory (490MB available on the
system used for this paper). Interestingly the AM335x
CPU has two smaller 32-bit RISC cores called the
Programmable Realtime Units or PRUs. These two
cores operate at 200MHz and must be programmed in
an assembly language that is limited to programs of
two thousand instructions per core or fewer, due to

the 8KB of instruction RAM available.11, 12,13
These extra cores offer exciting capabilities

for accelerating the performance of the Beaglebone
system by offloading certain operations, such as
UART access to peripherals through the GPIO pins
which they have access to (the PRUs can access 18 of
the 66 GPIOs). Furthermore the usage of “lesser”
cores in a CPU has been researched extensively as a
way to accelerate mature computations14 or provide a
low-power alternative to the main CPU.15,16

Project setup and methodology
From these tight requirements, and going off

work performed by Joshua Datko17 and others, I
decided to look at optimizing CPU energy-delay
product using dynamic voltage and frequency scaling
(DVFS) through the “governors” included in the
cpufreq program,18 optimizing memory access speeds,
and enabling available hardware acceleration for
cryptographic functions including AES, SHA, MD5,
and an on-chip RNG.11 Thus the project is a look at
how much hardware acceleration and DVFS can help
(or not) for the security, network and
telecommunications themed benchmarks in MiBench
and the scientific and compression benchmarks in the
Phoronix suites. These specific benchmarks were
chosen for their relevance to ANDESITE's scientific
mission and engineering requirements. The
benchmarking suite MEVBench was considered but
ultimately deemed inappropriate, due to its focus on
computer vision and multithreading,19 and
unnecessary since Phoronix and MiBench offer
comprehensive test suites to cover a wide variety of
application areas that are more relevant to
ANDESITE's mission requirements.

I also used the Tor internet anonymizing
utility20 to provide some unpredictable network
activity in the background. The Tor daemon uses
about 17MB of memory on the Beaglebone and a
small (<1%) amount of CPU resources continuously.
This is subject to unpredictable spikes every few
seconds (up to about 20% CPU usage and about
35MB of memory) and so it does a good job of
simulating unpredictable low-level background
activity. Aside from Tor, I wrote a script which
repeatedly uses dd and gzip to create, compress, and
delete a large file over and over to put stress on both
memory access (via dd) and CPU usage (via gzip).

Ubuntu and many other versions of linux
support DVFS “governors” which are programs that
control CPU frequency scaling. On the Beaglebone
black there are four frequencies which can be chosen,
300MHz, 600MHz, 800MHz, and 1GHz. The
benchmarks were run first with the DVFS governor
set to “ondemand”, which tries to keep the CPU
frequency as low as possible and only makes short
exceptions to raise the frequency above 300MHz.
When ondemand raises the frequency it sends it
straight up to maximum, so the CPU only throttles
between min and max. Then the benchmarks were
performed with the “performance” governor which
keeps the frequency at maximum (1GHz) even when
idle. Thus we expect to see better performance due to
a lack of switching costs from going between
300MHz and 1GHz. A more realistic governor for
usage on board ANDESITE would be the
“conservative” governor, which is similar to
ondemand (preferring 300MHz unless CPU usage
goes above 95%) but unlike ondemand, when it
scales up the DVFS it goes step by step, first going to
600MHz, and then if CPU usage is again above 95%,
moving to 800MHz and so on up to maximum.

Benchmarks Used
The first benchmark I used was SciMark 2.0,

a benchmark suite produced by the National Institute
of Standards and Technology, which was chosen to
present a variety of scientific tasks that the
ANDESITE computer will most likely have to
perform. These include fast Fourier transforms,
Monte Carlo integration, and three different types of
matrix math: LU factorization, sparse matrix
multiplication, and Jacobi “successive
over-relaxation” which is a method of solving linear
equations.21 These tests were performed first with and
without Tor running in the background, then with
both Tor and the script I created in the background,
and finally with different levels of DVFS and
cryptographic hardware acceleration enabled.

The second benchmarking suite is another
Phoronix test suite which uses different types of
compression algorithms to analyze the processor's
performance. ANDESITE will be doing a very large
amount of complicated data compression to try and
rectify the difference between the gigabits of data it
receives from its flock of sensors, and the kilobits of
bandwidth that it has available to downlink that

data.22 Some of this compression will be done with
unique, purpose-built algorithms that are specific to
the types of data we anticipate acquiring and the
specific parts of that data we are interested in. Much
of this depends on the finalized design and
performance of the sensor systems. However, widely
available open-source algorithms can approximate
these uses quite closely. The Phoronix suite uses
7zip,23 Parallel BZIP2 (pbzip2),24 and LZMA25
algorithms.

The MiBench embedded benchmark suite
offers a wide range of commercially representative
algorithms for different areas of use. I have selected
networking, security, and telecommunications. The
networking benchmarks are a matrix computation
based algorithm known as Dijkstra which simulates
computing a shortest path between nodes in a
network, and the traversal of a Patricia Tree which
simulates altering routing tables dynamically. In the
cryptographic suite I have chosen SHA encryption
and the Blowfish cipher because variants of SHA can
be used to encrypt data or compute hashes, and
Blowfish or algorithms similar to it will be used for
secure communication of data and commands. Thus
these two benchmarks cover everything from error
checking (SHA is used for calculating MD5 hashes)
to securing a communication stream. Finally in the
telecommunications suite there is another version of
the fast Fourier transform, a GSM (Global Standard
for Mobile) communications encoder/decoder
operating on a large sample of voice data, an
Adaptive Differential Pulse Code Modulation
(ADPCM) algorithm also operating on speech
samples while performing 4:1 compression, and a
32-bit error checking algorithm called Cyclic
Redundancy Check (CRC) using the same data set as
the ADPCM benchmark. The ADPCM benchmark
performance was highly variable, far more so than the
others in MiBench, so I ran it ten times and averaged.
The MiBench tests were not run with Tor, dd, or gzip
in the background.

Finally, all of these benchmarks were run
again after implementing the steps outlined by Joshua
Datko to enable hardware crypto acceleration, and
using the “performance” governor to create a
best-case scenario for comparison.

Experimental results

As mentioned above, these tests were run first
with a “fresh install” system using the defaults for
Ubuntu 14.04 and the kernel image 3.8.13-bone47.
Then a second run was performed for calibration, a
run with Tor active in the background, a run with dd,
gzip and Tor all active, and then with none of those
programs active while I performed DVFS scaling
using the performance and conservative CPU
frequency governors. The ondemand governor is the
default and so that was being used during all the other
runs.

SciMark 2.0 Results

From the results shown in Figure 1, the Monte
Carlo estimation was nearly unaffected by any
alterations to CPU frequency or background activity.
This is more surprising given that this benchmark is

Figure 1: SciMark 2.0 - Monte Carlo estimation

PHORONIX-TEST-SUITE.COMMflops, More Is Better

SciMark v2.0
Computational Test: Monte Carlo

first_run

second_run

run_with_tor

dd_and_gzip_in_background

performance

conservative_governor

crypto_acceleration

6 12 18 24 30

SE +/- 0.00
23.45

SE +/- 0.00
23.45

SE +/- 0.00
23.44

SE +/- 0.04
23.35

SE +/- 0.00
23.45

SE +/- 0.00
23.45

SE +/- 0.00
23.45

Powered By Phoronix Test Suite 5.0.1

Figure 2: SciMark 2.0's version of FFT

PHORONIX-TEST-SUITE.COMMflops, More Is Better

SciMark v2.0
Computational Test: Fast Fourier Transform

first_run

second_run

run_with_tor

dd_and_gzip_in_background

performance

conservative_governor

crypto_acceleration

4 8 12 16 20

SE +/- 0.02
14.94

SE +/- 0.03
14.88

SE +/- 0.03
14.83

SE +/- 0.14
15.51

SE +/- 0.01
15.70

SE +/- 0.04
15.31

SE +/- 0.02
15.74

Powered By Phoronix Test Suite 5.0.1

supposed to exercise the random number generator,
the hardware for which is enhanced by the addition of
the cryptographic hardware acceleration kernel
module. It appears that the calculation is simple
enough for the processor to handle without trouble,
even under heavy loads.

Figures 2, 3, 4, and 5 show the impact of these
environmental changes on the other algorithms in the
SciMark 2.0 suite. The fast Fourier transform showed
erratic results and high variability. The three linear
math applications showed reduced performance when
dd and gzip were running in the background, but
were otherwise agnostic to environmental changes.

It appears that the AM335x CPU is well
optimized for these calculations and is robust against
heavy workloads causing performance degradation
for linear calculations.

Compression Suite Results

Figure 4: SciMark 2.0 - LU matrix factorization

PHORONIX-TEST-SUITE.COMMflops, More Is Better

SciMark v2.0
Computational Test: Dense LU Matrix Factorization

first_run

second_run

run_with_tor

dd_and_gzip_in_background

performance

conservative_governor

crypto_acceleration

6 12 18 24 30

SE +/- 0.00
25.09

SE +/- 0.00
25.09

SE +/- 0.00
25.07

SE +/- 0.01
24.88

SE +/- 0.00
25.09

SE +/- 0.00
25.09

SE +/- 0.01
25.08

Powered By Phoronix Test Suite 5.0.1

Figure 5: SciMark 2.0 - Jacobi SOR matrix math

PHORONIX-TEST-SUITE.COMMflops, More Is Better

SciMark v2.0
Computational Test: Jacobi Successive Over-Relaxation

first_run

second_run

run_with_tor

dd_and_gzip_in_background

performance

conservative_governor

crypto_acceleration

11 22 33 44 55

SE +/- 0.00
47.01

SE +/- 0.00
47.01

SE +/- 0.01
46.98

SE +/- 0.12
46.50

SE +/- 0.01
46.89

SE +/- 0.00
46.89

SE +/- 0.00
46.90

Powered By Phoronix Test Suite 5.0.1

Figure 6: 7zip compression. More is better.

PHORONIX-TEST-SUITE.COMMIPS, More Is Better

7-Zip Compression v9.20.1
Compress Speed Test

first_run

tor_active_in_background

dd_gzip_tor_in_background

performance

conservative_governor

crypto_acceleration

80 160 240 320 400

SE +/- 0.00
358

SE +/- 0.33
357

SE +/- 32.54
233

SE +/- 0.33
359

SE +/- 0.88
358

SE +/- 0.33
359

Powered By Phoronix Test Suite 5.0.1

1. (CXX) g++ options: -pipe -lpthread

Figure 3: SciMark 2.0 - Sparse Matrix
Multiplication

PHORONIX-TEST-SUITE.COMMflops, More Is Better

SciMark v2.0
Computational Test: Sparse Matrix Multiply

first_run

second_run

run_with_tor

dd_and_gzip_in_background

performance

conservative_governor

crypto_acceleration

9 18 27 36 45

SE +/- 0.00
38.01

SE +/- 0.00
38.01

SE +/- 0.00
37.98

SE +/- 0.17
37.63

SE +/- 0.01
38.04

SE +/- 0.00
38.04

SE +/- 0.00
38.03

Powered By Phoronix Test Suite 5.0.1

The compression suite of benchmarks showed
much more variability and dependency on the
environment, specifically on the CPU load. LZMA is
used as part of 7zip, so one would expect similar
results between those two benchmarks. The graphs
here show MIPS for 7zip and seconds-to-completion
for LZMA, so although the graphs are inverses of
each other they do show a strong connection since
both suffer dramatically from having dd and gzip run
in the background while being agnostic to other
environmental variables. They even perform equally
well despite the frequency switching costs of the
ondemand and conservative governors, compared
with the performance governor.

The Beaglebone has only a single core
processor, so one would expect no benefit from the

multithreaded nature of pbzip2. However, upon
running the pbzip2 benchmark with the Tor program
active in the background, there was considerable
slowdown as demonstrated in Figure 7. The excellent
performance during the first run on a clean install
indicates that in the course of setting up the tests and
using the Beaglebone, I may have introduced a
number of active threads into the environment despite
my efforts to eliminate unnecessary activity in the
background. It's possible that the Tor daemon has to
check frequently for activity and may cause frequent
short interruptions to thread scheduling on the
processor, disrupting a very thread-dependent
program like pbzip2.

MiBench Results

The MiBench suite contained programs which
ran extremely quickly, on the order of 1-8 seconds
rather than 1-4 hours like the Phoronix testbed. As a
result, I deemed it impractical to do comparisons with
dd, gzip, and Tor running in the background and
instead focused on the effects of dynamic frequency
scaling and hardware acceleration. These graphs
show the amount of time the process spent in the
kernel (shown in orange as “sys”), outside the kernel
(in red, as “user”), and overall real-world time shown
in blue. The user and sys time are only for time spent
on this exact process, while real-world time takes in
to account all delays that a user of the system
experiences in waiting for the process to be
completed. Thus frequent interruptions from other
threads or delays in accessing main memory would
show up in the “real” time segment of each graph.

Figure 7: Parallel BZIP2 compression duration in
seconds. Less is better.

PHORONIX-TEST-SUITE.COMSeconds, Less Is Better

Parallel BZIP2 Compression v1.1.6
256MB File Compression

first_run

tor_active_in_background

dd_gzip_tor_in_background

performance

conservative_governor

crypto_acceleration

2 4 6 8 10

SE +/- 0.25
5.75

SE +/- 0.42
8.61

SE +/- 0.50
7.30

SE +/- 0.20
6.69

SE +/- 0.48
6.65

SE +/- 0.15
6.40

Powered By Phoronix Test Suite 5.0.1

1. (CXX) g++ options: -O2 -pthread -lbz2 -lpthread

Figure 8: LZMA compression in seconds. Less is
better.

PHORONIX-TEST-SUITE.COMSeconds, Less Is Better

LZMA Compression
256MB File Compression

first_run

tor_active_in_background

dd_gzip_tor_in_background

performance

conservative_governor

crypto_acceleration

500 1000 1500 2000 2500

SE +/- 4.50
1428.39

SE +/- 4.81
1434.50

SE +/- 139.66
2304.28

SE +/- 3.35
1426.82

SE +/- 1.27
1427.42

SE +/- 3.19
1424.07

Powered By Phoronix Test Suite 5.0.1

1. (CXX) g++ options: -O2

Figure 9: The Dijkstra algorithm

For all of these benchmarks except ADPCM,
the real time spent in the process is almost entirely a
sum of the time spent in user-space and kernel-space
working on that process. However, for ADPCM there
are large delays from other processes which affect the
time to completion. The implementation of ADPCM
here may be heavily reliant on memory access,
possibly during the compression phase, and thus
suffers more from short interruptions from other
activity using the bus. As mentioned previously the
ADPCM benchmark was highly variable, an
indication of susceptibility to the CPU and memory
environment. It was also the only algorithm which
appeared to benefit from use of the cryptographic
hardware acceleration.

Figure 10: The Patricia Tree data structure

Figure 11: Blowfish encryption

Figure 12: SHA-1

Figure 13: Adaptive Differential Pulse Code
Modulation

Figure 14: 32-bit Cyclic Redundancy Check

The version of the fast Fourier transform used
in the MiBench suite differs from the version used in
Phoronix by being two-dimensional rather than
one-dimensional, and using pseudo-random complex
data. The Phoronix version also performs the
benchmark in two discrete steps rather than one.

Conclusions

From Figures 1-5 it appears that the
Beaglebone's CPU is quite optimized for matrix
math, showing nearly the same time of computation
at 300MHz as it does at 1GHz.

Figures 6-8 demonstrate that compression is
quite a different matter, being reliant on CPU
frequency as well as memory access times, and not
robust against sharing the CPU and memory bus with
other processes. The need to access memory to

process files which are hundreds of megabytes in size
means that the 64KB L1 cache and 256KB L2 cache
are not nearly enough and calls to main memory are a
major factor in performance. This is not something
which could be optimized and is a likely bottleneck
for ANDESITE's main computer.

The MiBench suite provides an interesting
look at the switching costs inherent in using any of
the dynamic governors for DVFS, seen in Figures
9-16. Specifically the conservative governor, which
does the most frequency scaling (with resolution on a
10ms time scale, meaning the frequency may be
readjusted every 10ms) created the most delays in
performance which is unfortunate since it is also the
governor most optimized for battery-dependent
systems such as phones, laptops and satellites.
Cryptographic hardware acceleration did not play
much of a role, even for SHA-1 computations, which
is surprising but these algorithms are also between
15-20 years old and so the AM335x CPU may
already be highly optimized for them. It is
unfortunate the MiBench suite does not include more
recent algorithms.

The time saved by using the static
“performance” governor, which locks the CPU
frequency at 1GHz, is a major contributor to shorter
algorithms like Dijkstra and SHA-1 (Figures 9 and 12
respectively) where the switching cost from
ondemand's transition from 300MHz to 1GHz leads
to more than triple the time spent in computation.
This effect is less noticeable in direct proportion to
time spent in the process. This means that if
ANDESITE's system designers intend to do heavy
network activity or telecommunications during a
certain time period, requiring many uses of hashing
and encryption,26 they should manually set the DVFS
governor to maximum frequency for the whole
duration of that activity and only reduce it to a more
power-conscious mode after the communications
window has closed. The “userspace” governor allows
users with appropriate permissions to manually set
the frequency without going in to the kernel so this is
my recommendation for detailed system-level
optimization.

This project has shown that Linux running on
the Beaglebone offers many opportunities to adjust
the performance and energy-delay product for
processes on the system, allowing room for
optimization geared towards security, networking,

Figure 15: Another version of the FFT

Figure 16: Global Standard for Mobile
encode/decode using Time- and
Frequency-Division Multiple Access encoding.

and telecommunications in a resource-constrained
environment like space. With further work on
utilizing the PRUs we expect to see tremendous
efficiency gains for dynamic operation in the field.

Bibliography

[1] Phoronix Test Suite
http://www.phoronix-test-suite.com/

[2] MiBench: A free, commercially representative
embedded benchmark suite
http://www.eecs.umich.edu/mibench/Publications/Mi
Bench.pdf

[3] Efficient Resource Provisioning in Compute
Clouds via VM Multiplexing by Meng, Isci, Kephart,
et al. June 2010.

[4] Renewable and Cooling Aware Workload
Management for Sustainable Data Centers by Liu,
Chen, Bash, Wierman et al. June 2012.

[5] ACR: Automatic Checkpoint/Restart for Soft and
Hard Error Protection by Ni, Meneses, Jain, Kale.

[6] Global Educational Network for Satellite
Operations
https://en.wikipedia.org/wiki/Global_Educational_Ne
twork_for_Satellite_Operations_%28GENSO%29

[7] China May Have Hacked US Satellites
http://defensetech.org/2011/10/28/china-may-have-ha
cked-u-s-satellites/

[8] Hacking Risks for Satellites
http://worldspaceriskforum.com/2012/wp-content/upl
oads/2012/03/29FELI1.pdf

[9] Satellite TV Technology
https://www.defcon.org/images/defcon-11/dc-11-pres
entations/dc-11-OldSkoolS/dc-11-OldSkoolS.pdf

[10] Arrests Made in TV Satellite Hacking
http://abcnews.go.com/Technology/story?
id=99047&page=1

[11] AM335x ARM Cortex-A8 Microprocessors
(MPUs) Technical Reference Manual (Rev. J)
http://www.ti.com/lit/ug/spruh73j/spruh73j.pdf

[12] Sitara AM335x ARM Cortex-A8
Microprocessors (MPUs) (Rev. F)
http://www.ti.com/lit/ds/symlink/am3359.pdf

[13] AM335x Thermal Considerations
http://processors.wiki.ti.com/index.php/AM335x_The
rmal_Considerations

[14] Conservation Cores: Reducing the Energy of
Mature Computations by Venkatesh, Sampson,
Goulding, et al. March 2010.

[15] Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power
Reduction by Kumar, Farkas, Jouppi et al. 2003

[16] ARM big.LITTLE Processor
http://www.arm.com/products/processors/technologie
s/bigLITTLEprocessing.php

[17] Quest for Crypto Acceleration on the
BeagleBone Black
http://datko.net/2013/09/22/quest_bbb_crypto/

[18] Linux Kernel Documentation: cpu-freq
governors
http://www.mjmwired.net/kernel/Documentation/cpu-
freq/governors.txt

[19] MEVBench: A Mobile Computer Vision
Benchmarking Suite
http://www.eecs.umich.edu/mevbench/publications/II
SWCFinalCopy.pdf

[20] Tor: Overview
https://www.torproject.org/about/overview.html.en

[21] SciMark 2.0
http://math.nist.gov/scimark2/

[22] Data Budget_V1. A spreadsheet outlining
ANDESITE's data budget. May 6, 2014. Document
not included (ITAR restricted).

[23] 7zip
https://en.wikipedia.org/wiki/7-Zip

[24] Parallel BZIP2 (pbzip2)
http://compression.ca/pbzip2/

[25] Lempel-Ziv-Markov chain algorithm
https://en.wikipedia.org/wiki/Lzma

[26] BUSAT Command & Data Handling Subsystem
Critical Design Review. March 6, 2014. Document
not included (ITAR restricted).

